
Introduction to
Neural Networks

Terrance DeVries



Contents
1. Brief overview of neural networks
2. Introduction to PyTorch (Jupyter notebook)
3. Implementation of simple neural network (Jupyter notebook)



What is an Artificial Neural Network?
● Predictive model that can learn to map given inputs to desired outputs
● Mathematical function designed to mimic the brain

Biological Neural NetworkArtificial Neural Network



The Biological Neuron
The brain contains billions of interconnected neurons.

1. Dendrites take in inputs
2. Cell does some electrochemical processing
3. If resulting voltage is greater than some threshold, the neuron “fires”
4. Signal is sent down axon to other neurons



The Artificial Neuron
Artificial neural networks are composed of many artificial neurons.

1. Neuron receives inputs
2. Each input is multiplied by some weight and then summed together
3. Pass response through an “activation function”
4. Output signal is sent to other neurons



The Artificial Neuron
An artificial neuron without an 
activation function is simply linear 
regression

● x = input value
● y = predicted value
● m = slope of the line
● b = bias

y = mx + b



Activation Function
● Simulates the firing of a biological neuron
● Allows the neural network to model non-linear problems (only if the 

activation function is also non-linear)

(Equivalent to having no activation function)



Interactive Demo
https://playground.tensorflow.org

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=&seed=0.08201&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


Universal Approximation Theorem
A neural network with at least one hidden layer can approximate any continuous 
function.

This is very powerful: for any set of input-output pairs, there exists a neural 
network that can almost perfectly model them

Some limitations:

● Number of neurons may be impractically large
● Generalization to new samples is not guaranteed
● It may be difficult to find the correct weights



How Do We Find the Correct Weights?
Stochastic Gradient Descent (SGD): Iterative method for optimizing 
differentiable functions.

1. Randomly initialize weights     and select learning rate  

2. Repeat until convergence:

To calculate     we need a loss function, and to calculate     we use error 
backpropogation.



Loss Function
● Loss function measures how far away the prediction is from the desired 

output (i.e. error)
● Use gradient descent to minimize the loss

Regression loss function:
● Mean squared error (MSE):

Classification loss function:
● Cross entropy:



Error Backpropogation
In order to calculate the error attributed to each weight we use the 
backpropogation algorithm:

1. Propagate forward through the network to generate an output
2. Calculate the loss (i.e. error)
3. Use chain rule to calculate the error associated with each neuron



1. Load batch of training inputs
2. Perform forward pass
3. Calculate loss
4. Backpropogate errors
5. Update weights
6. Repeat until convergence

One pass through the training loop is called an iteration.

One pass through the dataset is called an epoch.

Multiple epochs are usually required before the model converges.

Training Loop

Epoch



Why Neural Networks?
● Automatic feature extraction

○ No need to hand-craft features

● Extremely versatile
○ Can be adapted to a wide variety of 

non-standard problems

● Performance scales with the 
amount of data



Deep Learning Libraries
● Provides optimized implementations of common neural network building 

blocks
● Automatic differentiation - no need to manually calculate derivatives!
● Some libraries provide tools for deploying trained models



Jupyter Notebook
https://jupyter.co60.ca

https://jupyter.co60.ca

